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Abstract
The purpose of this study is to present a method of three-
dimensional computed tomographic (3D-CT)
cephalometrics and its use to study cranio/maxilla-facial
malformations. We propose a system for automatic
localization of cephalometric landmarks using reeb
graphs. Volumetric images of a patient were
reconstructed into 3D mesh. The proposed method is
carried out in three steps: we begin by applying 3d mesh
skull simplification, this mesh was reconstructed from a
head volumetric medical image, and then we extract a
reeb graph. Reeb graph mesh extraction represents a
skeleton composed in a number of nodes and arcs. We are
interested in the node position; we noted that some reeb
nodes could be considered as cephalometric landmarks
under specific conditions. The third step is to identify
these nodes automatically by using elastic mesh
registration using “thin plate” transformation and
clustering. Preliminary results show a landmarks
recognition rate of more than 90%, very close to the
manually provided landmarks positions made by a
medical stuff.
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1 Introduction
Radiographic cephalometry has been one of the most
important diagnostic tools in maxillofacial diseases, since
its introduction in the early 1930. It deals with the
morphological scientific study of the dimensions of all the
structures present in a human head, usually through the
use of standardized lateral head radiographs. Generations
of doctors have relied on the interpretation of these images
for their diagnosis and treatment planning as well as for
the long-term follow-up of growth and treatment results.
Also in the planning for surgical orthodontic corrections
of jaw discrepancies,lateral/antero-posterior cephalograms
have been valuable tools.
Parameters measurement is based on a set of agreed upon
feature point’s landmarks. The detection of the landmarks

plays an essential role in diagnosis and treatment planning
by doctors.
Head-growing analyzing with anatomical landmarks was
first proposed by Arc Thomson, in 1917 [1]. His approach
was based on a deforming grid. Changes in the landmarks
position resulted in deformations of the grid. His method
was applied not only to quantify the effects of growth, but
also to relate different individuals and even different
species. A malocclusion is a misalignment of teeth or
incorrect relation between the teeth of the two dental
arches, Broadbent [2] and later Brodie [3] applied a
method based in landmarks to quantify malocclusions and
study their effects. They used radio-graph image to define
the Landmarks, head structure like bony or soft tissue, had
to be identified. This approach was used for measurement
specification at an individual of known age, sex and race
to quantify head anatomy differences for diagnosis, such
as the one shown in Figure- 1.

Figure 1– Manual extraction of cephalometry landmarks
in X-ray image

Downs [4] proposed in 1948 the first cephalometric
analysis method. His approach was based on
measurements of 10 angles from a lateral radiographs
from a group of selected individuals; he calculates the
average values and gives them a clinical significance. His
approach was the basis for most methods used at present.

Ricketts [5] and Steiner [6] proposed traced lines between
significant landmarks, so their length and angles can be
measured and compared with standard values shown in
Figure-2.

mailto:mmestiri@gmail.com


Figure 2 – Line traced between significant landmarks [6]

Locating landmarks depends on medical expertise to
locate the landmarks manually. This can take an
experienced orthodontist up to 30 min. The process is time
consuming, subject to human error and tedious.
An automated system would help to eliminate the above-
mentioned problems and hence produce repeatable results.

2 Related works
All the automatic cephalometric landmarks recognition
methods use 2D image processing, the various methods
used by researchers in this field found in the literature can
be divided into three different approaches: knowledge-
based feature detection, pattern matching and neural
networks with fuzzy inference system.
Levy [7] proposed in 1986 the first automatic extraction of
cephalometric landmarks. His method was based on
knowledge based line extraction technique. He begins
with applying median filter and histogram equalization to
enhance the X-rays images, then he applies a Mero-Vassy
operator [8] to extract relevant edges using knowledge-
based line tracker. The landmarks are then located
according to their geometric definition online crossing.
This method requires good X-rays image (cannot be
guaranteed in practice). Parthasaraty[9] proposed an
enhancement of levy approach by introducing a multi
resolution pyramidal analysis of X-rays images to reduce
the processing time.
Yen [10], Contereras[11], Jackson [12], Cohen [13] and
Davis and Forsyth [14] presented similar knowledge-
based edge tracking methods. These methods depend
highly on X-ray image quality and can be used only for
landmarks located on an edge.
The second approach used mathematical or statistical
models to narrow down the search area for each landmark,
and then shape-matching techniques are used to locate the
exact location of each landmark. Cardillo and Sid-Ahmed
[15] proposed a method based on a combination of
mathematical modeling methods, like affine
transformation to remove the shifts, rotations and size
differences to reduce the size of the search area. Then,
they applied a shape recognition algorithm based on gray-
scale mathematical morphology to locate the landmarks.

The method locates 76% of the landmarks within 2 mm.
Grauetal[16], adds a line detection module to select the
most significant lines in Sid-Ahmed[15] approach. Then,
he applies mathematical morphology transformations for
shape recognition. The disadvantage of theses methods is
that it’s very sensitive to noise present in X-rays images.
Desvignes[17] proposed a statistical method based on
estimation oflandmarks locations using adaptive
coordinate space where locations are registered. The
method was tested on a set of 58 X-rays, of which 28 were
used for training. They obtain 99.5% of the landmarks but
with 4:5 mm mean error between the real position and the
estimated position, far from the authorized range (±2
mm). Hutton [18] used active shape models for
cephalometric landmarking. They established a template
of possible deformations from a training set of hand-
annotated image. The result was 35% of 16 landmarks
within an acceptable range of ±2 mm. Implementation
could be used as a first estimation location of the
landmarks.

The third category of researchers used neural networks
and fuzzy inference systems to locate the landmarks.
Uchino [19] proposed a fuzzy learning machine that could
learn the relation between the gray levels of the image and
the location of the landmarks. They begin by dividing the
image into nine blocks, each one is an input to the fuzzy
learning machine. The weights were adjusted by learning
the coordinates of the landmark. The block containing the
landmark was divided in nine separate blocks until
landmark location is obtained. This method produced an
average error of 2:3 mm. this method depends highly on
scale, rotation and shift of X-rays images. Innes [20]
highlights regions containing craniofacial features using
Pulse Coupled Neural Networks (PCNN) from X-rays
images. They get 36.7% rate for the region containing
sella landmark, 88.1% for the region containing the chin
landamark, and 93.6% for the region containing the nose
landmark. The most disadvantage of PCNN’s method is
that they require a considerable manual contribution to set
the required parameters.
In this paper, we are interested in the extension of 2D X-
rays to 3D image cephalometry analysis. Some work has
been carried out to study the potential advantages of 3D
imaging methods, such as computed tomography for
cephalometric analysis. Kragskov [21] made a
comparative result, using human dry skulls. Ferrario [22]
studied 3D facial morphometry using infrared cameras,
but only as a supplement for classic cephalometry.

We propose a novel method based on the use of reeb
graph for Automatic localization of craniofacial
landmarks. The task is a difficult one due to the
complexity and variability of cephalometry landmarks.



3 Proposed Method
As seen in previous works, many researchers have
attempted automatic cephalometric landmarks detections.
However, a major drawback of the existing techniques is
that they use a 2D representation of a 3D structure. In this
paper we are interested in a 3D cephalometric landmarks.
The development of spiral CT and cone beam CT has
revolutionized the medical image techniques, the former
providing outstanding resolution and the latter, with its
low cost, allowing unique accessibility, as a result 3-D
imaging has become an essential tool in planning and
managing the treatment of facial deformity.

3.1 3D Mesh database

The image data-base in composed of Dicom images stored
in a series of 2D grey level images from a Spiral CT scan
(with 512 x 512 matrixes, 110 kV, and 80 mAs)
performed at 1 mm slice thickness. The extraction of hard
and soft head tissue (bones and skin)is done by using a
threshold and region growing technique. Each bones and
skin parts are separately constructed using marching cube
algorithm as shown in Figure 3.

Figure 3 – 3D mesh extraction of hard and soft tissues

The results of this extraction method are 3meshes:
interior/exterior skull bones, and mandibular bone Figure-
4.

Figure 4 – 3D Mesh extraction from volumetric CT-scan

3.2 3D cephalometric landmarks

After getting the mesh database, 3D cephalometric
landmarks must be localized in hard tissue. In the
literature we found 20 hard landmarks, some of them are
presented in table-1.

No Abbreviation Hard Tissue

1 N Nasion is the midpoint of the frontonasal suture

2 S Sella is the centre of the hypophyseal fossa (sellaturcica).
3 Po Porion is the most superior point of each external acoustic meatus.

4 Or Orbitale is the most inferior point of each infra- orbital rim.
5 ANS Anterior Nasal Spine is the most anterior midpoint of the anterior nasal

spine of the maxilla.
6 PNS Posterior Nasal Spine is the most posterior midpoint of the posterior

nasal spine of the palatine bone.
7 PMP Posterior Maxillary Point is the point of maximum concavity of the

posterior border of the palatine bone in the horizontal plane at both
sides.

8 UI Upper Incisor is the most mesial point of the tip of the crown of each
upper central incisor.

9 LI Lower Incisor is the most mesial point of the tip of the crown of each
lower central incisor.

10 UMcusp Upper Molar cusp is the most inferior point of the mesial cusp of the
crown of each first upper molar in the profile plane.

Table 1 - 10 of the 20  cephalometric landmarks proposed
by Swennen [23]

Figure-5 shows some sample of CT-scan images with
located landmarks [23].

Figure 5 – A: Right hard cephalometric landmarks, B:
Facial hard cephalometric landmarks, C: Soft

cephalometric landmarks.

3.3 Automatic localization of craniofacial
landmarks

Figure-6 presented the bloc diagram of the proposed
method for automatic localization of 3D cephalometric
landmarks.

After transforming the volumetric medical images to a 3D
surface mesh, we need to make a reference shape model
containing all cephalometric landmarks information’s.
This is made with what is called “cephalometric head
atlas”.

CT-Scan Image

Threshold and
region growing

Interior
Cranium bone

Exterior
Cranium bone Mandibule Head Skin

3D mesh reconstruction
(Marching Cube)

Volumic grey level images

3D mesh images
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Figure 6 – Automatic localization of 3D cephalometric
landmarks using reeb graphs

1) Creating a cephalometric Head atlas

To automatically identify 3D landmarks, we need to have
prior knowledge information’s. We create a cephalometric
head atlas based on medical stuff help. This atlas is
composed of skull and skin meshes with 3D
cephalometric landmarks as shown in Figure 7.

Figure 7 – Cephalometric atlas of skull. A: initial clean
skull mesh, B: Cephalometric landmarks and C: Manual

localization of cephalometric landmarks.

In our method we choose to automatically localize
cephalometric landmarks using reeb graph. Below we will
expose the reeb graph extraction.

2) Reeb graph extraction

The Reeb graph is a chart of connectivity on a surface
between its critical points. The main advantage of the reeb
graph is that it makes it possible to represent 3Danatomyin
a simple topology way. It is composed of nodes and arcs;
each whole of level associates a node. The graph of Reeb

is obtained starting from the computation of a µ function
introduced by the theory of Morse [24] defined on the
closed surface of an object in its critical points [25].

We define µ: S  R defined on surface S of a 3D object.
The Reeb graph is a space quotient of the graph of µ in S,
defined by the relation of following equivalence between

X є S and Y є S:
·  µ(X)=µ(Y) (1)

X~Y  ·  X et Y are in the same Related component of
µ -1(µ(X)), and the image µ(Y) is S.

The aspect of the graph is entirely related to the choice of
the µ function, which determine the properties of stability
and invariance of the resulting graphs. Several functions
of application were proposed in the state of the art for the
construction of Reeb graphs [26].One example is the
function (µ(ν(x,y,z)) = z / ν є S), adapted well for the
models whose points are mainly distributed in the Z-axis
direction.

Figure 8 – Reeb graph with a z projection µ function

The function suggested in [27] as «outdistances geodesic
extrema of curve » is based on growth of areas starting
from local Gaussian curves on tops (germs). The results
depend on the position of the germs and require no
disturbed data; it’s a precise calculation of the local
curves. Hilaga[27] defines a function by computing the
distance from a point of the surface to the center of mass
G of the object:

(µ(ν) = d(G, ν) / νє S et d : Euclidian distance) (2)

The function defined by Thierny[28] at the characteristic
points and the geodesic distances is defined by the
following equation:( ) = 1 − , (3)

With , = ( , )
Where is the function of the geodesic distances and are
characteristic points. The function suggested in [29] is the
integral of the geodetic distances g(v, p) of v to the other
point’s p of the surface (4).(v) = ∫ ( , ) .  (4)

In our approach we choose this function and tested it
with different mesh simplification. Figure-9 shows an
example of reeb graph extraction.

Cephalometric
Head Atlas

Patient Head Mesh

Mesh Simplification
(Edge Collapse)

Reeb Graph
Extraction

Elastic Registration
(Thin Plate Spline)

Automatic Landmarks
localisation
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Figure 9 – A: Mandibulepatient mesh,B: Reeb graph
extraction.

3) Effect of Mesh Simplification on reeb graph extraction

Surface mesh simplification is the process of reducing the
faces number used in the mesh surface, while keeping
preserved as much as possible the overall shape, volume
and boundaries. Cignoni[29] proposed a comparison of
mesh simplification algorithms, and divided these methods
into 7 approaches: coplanar facets merging, controlled
vertex/edge/face decimation, re-tiling, energy function
optimization, vertex clustering,wavelet-based approaches,
and simplification via intermediate hierarchical
representation.
We test many simplification methodswith reeb graph
transformation, and we choose to use the edge collapse
method. These techniques reduce a model’s complexity by
repeated use of the simple edge collapse operation.
Researchers have proposed various methods of
determining the “minimal cost edge”to collapse at each
step (figure-10).

Figure 10 – Edge collapse algorithm [30]

We try to define the effect of the edge collapse
simplification process on the reeb graph extraction. The
result in shown in figure-11

Figure 11 – Patient Skull Simplification. A: 332.932
vertices and 662.564 faces, B: 20.047 vertices and 38.958

faces and C: 3.887 vertices and 7320 faces.

We notice that, after mesh simplification, the number of
nodes in the reeb graph decreased and they became closed
to cephalometric landmarks. And, of course, the
computation time is reduced Figure-12.

Figure 12 – decrease of reeb graph nodes and
reconciliation with cephalometric lanmarks

4) Elastic registration using thin plate spline

Mesh registration is a technique used to find a
transformation for mapping a source mesh known as a
reference mesh and a target mesh. This technique
associated to a head cephalometric atlas should help us to
get closer to cephalometric landmarks. Every elastic
registration process should begin with a rigid one. In this
study, we targeted the rigid registration between two
different meshes using the ICP algorithm (Iterative
Closest Point).

The principle of ICP is to iterate between a step of
mapping data and another step of optimization of rigid
transformation until convergence. The transformation
used for registration is composed of a 3D rotation and
translation. At each iteration,the Algorithm provides a list
of matched points and an estimate of the transformation.
The algorithm converges when the error in distance
between matched points is less than a given threshold. The
ICP algorithm is presented in the following[30] whereNp
is the number of points CP1 and CP2 and k is the index of
current iteration.Figure-13 shows a example of rigid
registration between mesh patient and cephalometric mesh
atlas.

Figure 13 - Rigid registration between patient and the
cephalometric atlas

Mesh elastic registration is a mesh deformation process;
one of the transformations that are able to represent elastic
deformations is the thin-plate spline (TPS). Thin
platesplines were introduced by Bookstein[31] for
geometric design. In 2D images, the TPS model describes
the transformed coordinates (xT,yT) both independently as
a function(7) of the original coordinates (x, y):

(xT,yT)=(fx(x,y),fy(x,y)) (7)
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The algorithm begins with a given displacements of a
number of landmark points, the TPS model interpolates
those points, while maintaining maximal smoothness. For
each landmark point (x,y), the displacement is represented
by an additional z-coordinate, and, for each point, the thin
plate is fixed at position (x, y, z). The strain energy is
calculated by integrating the second derivative over the
entire surface that can be minimized by solving a set of
linear equations.
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The TPSmodelforoneofthetransformed
coordinatesisgivenbyparametervectorsa and D (9):F(xT,yT)= a1+ a2x+a3y+…+    
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WhereF(r)= r2log(r)isthebasisfunction,
a=[a1a2a3a4]

Tdefinestheaffinepartof the transformation, D
givesan additional non-linear deformation,andtheLiarethe
landmarks that the TPS interpolates figure-4.

Figure 14 - A template configuration (left) and a target
configuration (right) of five landmarks each.

The deformation right grid illustrates the thin-plate spline
function between these configurations as applied to the
left regular grid.

The method interpolates some of the points using
smoother transformation controlled by a parameter µ,
which weights the optimization of landmark distance and
smoothness. For µ = 0, there is full interpolation, while for
very large µ, there is only an affine transformation. In our
methods the landmarks used in the TPS algorithm are the
reeb graph nodes as shown in figure-15.

Figure 15- elastic registration using thin plate and

As result of the elastic registration, the patient reeb graph
nodes become closer tothe atlas cephalometric head
landmarks. Since, some reeb graph nodes are not
cephalometric landmarks, we have to select the real ones.

5) Automatic localization of cephalometric
landmarks

This step starts with the creation of possible landmark
localization in cephalometric atlas. Then, it identifies the
reeb graph nodes that exist in the mesh patient. For each
node, it searches the closest landmarks in the
cephalometric atlasthrough the calculation of Euclidean
distance between an acceptable range of ±2 mm. Finally,
as a result all patient reeb graph nodesare associated to a
nearest cephalometric landmarks[32].

Figure 16 - Localization of cephalometric landmarks in
patient skull

6) Test and results

To validate our approach we asked a doctor to conduct
manually a cephalometric analysis on the meshpatient. We
thencalculate the error between its
points and cephalometric landmarks automatically
localized by our method. The result is showed in the
following table:

No Abbreviation Error in mm Recognized
1 N 0.5 Yes
2 S 2.6 No
3 Po 1.3 Yes
4 Or 0.4 Yes
5 ANS 0.7 Yes
6 PNS 2.8 No
7 PMP 2 Yes
8 UI 1.3 Yes
9 LI 1.7 Yes
10 UMcusp 1.8 Yes
11 LMcusp 0.9 Yes
12 Men 0.8 Yes
13 Go 1.5 Yes
14 Fz 1.7 Yes
15 Zy 0.3 Yes
16 A 0.4 Yes
17 B 0.5 Yes
18 Pog 0.8 Yes
19 Ba 0.6 Yes
20 Co 1.4 Yes
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each landmark point (x,y), the displacement is represented
by an additional z-coordinate, and, for each point, the thin
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n

i ii yxLFD
1

, (9)

WhereF(r)= r2log(r)isthebasisfunction,
a=[a1a2a3a4]

Tdefinestheaffinepartof the transformation, D
givesan additional non-linear deformation,andtheLiarethe
landmarks that the TPS interpolates figure-4.

Figure 14 - A template configuration (left) and a target
configuration (right) of five landmarks each.

The deformation right grid illustrates the thin-plate spline
function between these configurations as applied to the
left regular grid.

The method interpolates some of the points using
smoother transformation controlled by a parameter µ,
which weights the optimization of landmark distance and
smoothness. For µ = 0, there is full interpolation, while for
very large µ, there is only an affine transformation. In our
methods the landmarks used in the TPS algorithm are the
reeb graph nodes as shown in figure-15.

Figure 15- elastic registration using thin plate and

As result of the elastic registration, the patient reeb graph
nodes become closer tothe atlas cephalometric head
landmarks. Since, some reeb graph nodes are not
cephalometric landmarks, we have to select the real ones.

5) Automatic localization of cephalometric
landmarks

This step starts with the creation of possible landmark
localization in cephalometric atlas. Then, it identifies the
reeb graph nodes that exist in the mesh patient. For each
node, it searches the closest landmarks in the
cephalometric atlasthrough the calculation of Euclidean
distance between an acceptable range of ±2 mm. Finally,
as a result all patient reeb graph nodesare associated to a
nearest cephalometric landmarks[32].

Figure 16 - Localization of cephalometric landmarks in
patient skull

6) Test and results

To validate our approach we asked a doctor to conduct
manually a cephalometric analysis on the meshpatient. We
thencalculate the error between its
points and cephalometric landmarks automatically
localized by our method. The result is showed in the
following table:

No Abbreviation Error in mm Recognized
1 N 0.5 Yes
2 S 2.6 No
3 Po 1.3 Yes
4 Or 0.4 Yes
5 ANS 0.7 Yes
6 PNS 2.8 No
7 PMP 2 Yes
8 UI 1.3 Yes
9 LI 1.7 Yes
10 UMcusp 1.8 Yes
11 LMcusp 0.9 Yes
12 Men 0.8 Yes
13 Go 1.5 Yes
14 Fz 1.7 Yes
15 Zy 0.3 Yes
16 A 0.4 Yes
17 B 0.5 Yes
18 Pog 0.8 Yes
19 Ba 0.6 Yes
20 Co 1.4 Yes



Our method localized 18 landmarks on 20. This mean a
percentage of 90% landmarks in patient mesh was
recognized.

Figure 17 - Localization of Sella and PNS Landmarks

The Sella landmark (S) is very difficult to be localized.It
is not localized in the surface mesh, and the doctors need
to insert it taking into account the interior skull surface.
The Posterior Nasal Spine Landmark (PNS) is defined on
the exo-cranial skull base view of the 3-D hard tissue
surface representation. This landmark depends highly on
the accuracy of the mesh reconstruction.

4 Conclusion
In this paper, we have proposed a novel method for
automatic 3D localization of cephalometric landmarks.
Our approach is based on reeb graph nodes. In particular,
we have presented results for localized 90% of
cephalometric landmarks in CT-Scan medical
images.Weinitiated a new approach for automatic three-
dimensional cephalometric analysis. The proposed method
needs to be validated on a larger database.
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